Problem

Write the definite integral $\int_{-2}^{6}\left(x^{2}+3\right) d x$ as a limit of a Riemann sum and evaluate.
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(7+\frac{32 k}{n}+\frac{64 k^{2}}{n^{2}}\right)\left(\frac{8}{n}\right)=\frac{1064}{3}$
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(4-\frac{32 k}{n}+\frac{64 k^{2}}{n^{2}}\right)\left(\frac{8}{n}\right)=\frac{224}{3}$
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(7-\frac{32 k}{n}+\frac{64 k^{2}}{n^{2}}\right)\left(\frac{8}{n}\right)=\frac{296}{3}$
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(4+\frac{64 k^{2}}{n^{2}}\right)\left(\frac{8}{n}\right)=\frac{608}{3}$

Answer

Expert–verified
Hide Steps
Answer

Final Answer: The definite integral \(\int_{-2}^{6}\left(x^{2}+3\right) d x\) is \(\boxed{\frac{296}{3}}\).

Steps

Step 1 :The problem is asking for the definite integral of the function \(f(x) = x^2 + 3\) from \(-2\) to \(6\).

Step 2 :This can be calculated using the Fundamental Theorem of Calculus, which states that the definite integral of a function from \(a\) to \(b\) is equal to the antiderivative of the function evaluated at \(b\) minus the antiderivative of the function evaluated at \(a\).

Step 3 :The antiderivative of \(f(x) = x^2 + 3\) is \(F(x) = \frac{1}{3}x^3 + 3x\).

Step 4 :So, the definite integral of \(f(x)\) from \(-2\) to \(6\) is \(F(6) - F(-2)\).

Step 5 :Final Answer: The definite integral \(\int_{-2}^{6}\left(x^{2}+3\right) d x\) is \(\boxed{\frac{296}{3}}\).

link_gpt