Convert the following polar equation into a Cartesian equation. $r=-19 \sin (2 \theta)$
Finally, we get the Cartesian equation: \(\boxed{(x^2 + y^2)^3 = 1444(x^4 + x^2y^2 - y^4)}\).
Step 1 :First, we recall the conversion formulas from polar coordinates to Cartesian coordinates: \(x = r \cos(\theta)\) and \(y = r \sin(\theta)\).
Step 2 :Substitute \(r = -19 \sin(2\theta)\) into the conversion formulas, we get \(x = -19 \sin(2\theta) \cos(\theta)\) and \(y = -19 \sin(2\theta) \sin(\theta)\).
Step 3 :We can simplify the above equations using the double-angle formulas: \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\).
Step 4 :Substitute \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\) into the equations, we get \(x = -38 \sin(\theta) \cos^2(\theta)\) and \(y = -38 \sin^2(\theta) \cos(\theta)\).
Step 5 :We can further simplify the above equations using the Pythagorean identity: \(\sin^2(\theta) + \cos^2(\theta) = 1\).
Step 6 :Substitute \(\sin^2(\theta) = 1 - \cos^2(\theta)\) into the equation for \(y\), we get \(y = -38 (1 - \cos^2(\theta)) \cos(\theta)\).
Step 7 :Simplify the equation for \(y\), we get \(y = -38\cos(\theta) + 38\cos^3(\theta)\).
Step 8 :Now, we can eliminate \(\theta\) by squaring both equations and adding them together.
Step 9 :We get \(x^2 + y^2 = 1444\cos^2(\theta) - 1444\cos^4(\theta)\).
Step 10 :We can simplify the above equation using the identity: \(\cos^2(\theta) = 1 - \sin^2(\theta)\).
Step 11 :Substitute \(\cos^2(\theta) = 1 - \sin^2(\theta)\) into the equation, we get \(x^2 + y^2 = 1444 - 1444\sin^2(\theta) - 1444\sin^4(\theta)\).
Step 12 :We can further simplify the above equation using the identity: \(\sin^2(\theta) = y^2 / (x^2 + y^2)\).
Step 13 :Substitute \(\sin^2(\theta) = y^2 / (x^2 + y^2)\) into the equation, we get \(x^2 + y^2 = 1444 - 1444(y^2 / (x^2 + y^2)) - 1444(y^4 / (x^2 + y^2)^2)\).
Step 14 :Simplify the equation, we get \(x^2 + y^2 = 1444 - 1444y^2 / (x^2 + y^2) - 1444y^4 / (x^2 + y^2)^2\).
Step 15 :Multiply the equation by \((x^2 + y^2)^2\), we get \((x^2 + y^2)^3 = 1444(x^2 + y^2)^2 - 1444y^2(x^2 + y^2) - 1444y^4\).
Step 16 :Simplify the equation, we get \((x^2 + y^2)^3 = 1444(x^4 + 2x^2y^2 + y^4) - 1444y^2(x^2 + y^2) - 1444y^4\).
Step 17 :Simplify the equation, we get \((x^2 + y^2)^3 = 1444x^4 + 2888x^2y^2 + 1444y^4 - 1444x^2y^2 - 1444y^4 - 1444y^4\).
Step 18 :Simplify the equation, we get \((x^2 + y^2)^3 = 1444x^4 + 1444x^2y^2 - 1444y^4\).
Step 19 :Divide the equation by 1444, we get \((x^2 + y^2)^3 / 1444 = x^4 + x^2y^2 - y^4\).
Step 20 :Finally, we get the Cartesian equation: \(\boxed{(x^2 + y^2)^3 = 1444(x^4 + x^2y^2 - y^4)}\).