Problem

Use implicit differentiation to find $y^{\prime}$ and then evaluate $y^{\prime}$ at $(-2,1)$.
\[
x^{3}+8 y^{2}=\ln y
\]
\[
\begin{array}{l}
y^{\prime}=\square \\
\left.y^{\prime}\right|_{(-2,1)}=\square \text { (Simplify your answer.) }
\end{array}
\]

Answer

Expert–verified
Hide Steps
Answer

So, the final answer is \(y'=\frac{4}{5}\).

Steps

Step 1 :First, we differentiate both sides of the equation with respect to \(x\).

Step 2 :The derivative of \(x^{3}\) with respect to \(x\) is \(3x^{2}\).

Step 3 :The derivative of \(8y^{2}\) with respect to \(x\) is \(16yy'\).

Step 4 :The derivative of \(\ln y\) with respect to \(x\) is \(\frac{1}{y}y'\).

Step 5 :So, we have \(3x^{2}+16yy'=\frac{1}{y}y'\).

Step 6 :Rearrange the equation to solve for \(y'\), we get \(y'=\frac{3x^{2}y}{16y^{2}-1}\).

Step 7 :Now, we substitute \((-2,1)\) into the equation, we get \(y'=\frac{3(-2)^{2}(1)}{16(1)^{2}-1}\).

Step 8 :Simplify the equation, we get \(y'=\frac{12}{15}\).

Step 9 :So, the final answer is \(y'=\frac{4}{5}\).

link_gpt