Soit \( E=C^{1}([0,1], \mathbb{R}) \) muni de la norme \( \|.\|_{\infty} \) et \( \left(T_{n}\right)_{n \in N *} \) la suite définie par
\[
\begin{aligned}
T_{n}: E & \longrightarrow \mathbb{R} \\
f & \longmapsto T_{n} f .=n\left(f\left(\frac{1}{n}\right)-f(0)\right), n \in \mathbb{N}^{*}
\end{aligned}
\]
1) Montrer que \( T_{n} \) est continu
2) Poun \( f \in E \), colculer \( \operatorname{Lim} T_{n}(f) \) steinhous
\(\lim_{n \to \infty} T_n(f) = \lim_{n \to \infty} n(f(\frac{1}{n}) - f(0)) = f'(0)\)
Step 1 :\(\forall\epsilon>0, \exists\delta > 0 : \forall f, g \in E, \|f-g\|_{\infty}<\delta \Rightarrow \|T_n(f)-T_n(g)\|<\epsilon \)
Step 2 :\(\|T_n(f)-T_n(g)\| = |n(f(\frac{1}{n})-f(0))-n(g(\frac{1}{n})-g(0))| = n|f(\frac{1}{n})-f(0)-g(\frac{1}{n})+g(0)| \leq n\|f-g\|_{\infty} \)
Step 3 :\(\lim_{n \to \infty} T_n(f) = \lim_{n \to \infty} n(f(\frac{1}{n}) - f(0)) = f'(0)\)