UNIVERSITE CHOUAIB DOUKKALI
Année universitaire 2014-2015
FACULTE DES SCTENCES
DEPARTEMENT DE PHYSIQUE
EPRE IE DE THERMODYNAMIQUE SMPC
Durée
Exercice
- Démontrez les tiois lois de Laplace, pour un gaz parfait qui subit une transformation adiabal lique réversible.
Problème
On considede un gaz portici: dans la condition initiales
Etat A.
Etat B ㄱ> Etat C : refroidissement isochore jusqu'd
Etat -> Etat
Etat
1. Calculer le nomb ' moles
2. Déterminer les variables
3. Représenter les différentes transformations sur le diagramme de Clapoyron
4. Quelle est la nsture du cycle ?
5. Calculer le travaif a chaleur et la variation d'énergio interne, pour chacune des transformations:
6. Calculer lo travarlfotal et la quantité de chaleur totale.
7. Montrer que le prawier principo est véritió.
8. Si on veut appliquer ce cycle a un réfrigérateur, calculer son efficacité.
8. efficiency = \frac{W_{total}}{Q_{total}} = \frac{-9.3114 \mathrm{L~atm}}{9.3114 \mathrm{L~atm}} = -1.0000
Step 1 :1. n = \frac{P_A V_A}{R T_A} = \frac{3 \mathrm{~atm} * 16.4 \mathrm{~L}}{0.0821 \mathrm{~L~atm~mol}^{-1} \mathrm{K}^{-1} * 300 \mathrm{~K}} = 2.0101 \mathrm{~moles}
Step 2 :2a.
Step 3 :2b. V_B = V_A * \left(\frac{P_A}{P_B}\right)^{\frac{1}{\gamma}} = 16.4 \mathrm{~L} * \left(\frac{3 \mathrm{~atm}}{7.9974 \mathrm{~atm}}\right)^{\frac{1}{1.66}} = 5.6722 \mathrm{~L}
Step 4 :2c. V_C = V_B = 5.6722 \mathrm{~L}
Step 5 :2d. T_C = T_B * \frac{P_C}{P_B} = 450 \mathrm{~K} * \frac{4.05 \mathrm{~atm}}{7.9974 \mathrm{~atm}} = 255.1203 \mathrm{~K}
Step 6 :2e. P_D = P_A = 3 \mathrm{~atm}
Step 7 :2f. V_D = V_C * \frac{P_C}{P_D} = 5.6722 \mathrm{~L} * \frac{4.05 \mathrm{~atm}}{3 \mathrm{~atm}} = 7.6829 \mathrm{~L}
Step 8 :2g. T_D = T_C = 255.1203 \mathrm{~K}
Step 9 :3. diagramPV
Step 10 :4. natureCycle
Step 11 :5a. W_{AB} = \frac{R * T_B * (P_A - P_B)}{\gamma - 1} = \frac{0.0821 \mathrm{~L~atm~mol}^{-1} \mathrm{K}^{-1} * 450 \mathrm{~K} * (3 \mathrm{~atm} - 7.9974 \mathrm{~atm})}{0.66} = -11.5956 \mathrm{L~atm}
Step 12 :5b. W_{BC} = 0 \mathrm{L~atm}
Step 13 :5c. W_{CD} = n * R * T_C * \ln{\frac{V_D}{V_C}} = 2.0101 \mathrm{~moles} * 0.0821 \mathrm{~L~atm~mol}^{-1} \mathrm{K}^{-1} * 255.1203 \mathrm{~K} * \ln{\frac{7.6829 \mathrm{~L}}{5.6722 \mathrm{~L}}} = 2.2842 \mathrm{L~atm}
Step 14 :5d. W_{DA} = 0 \mathrm{L~atm}
Step 15 :6a. W_{total} = W_{AB} + W_{BC} + W_{CD} + W_{DA} = -11.5956 \mathrm{L~atm} + 0 \mathrm{L~atm} + 2.2842 \mathrm{L~atm} + 0 \mathrm{L~atm} = -9.3114 \mathrm{L~atm}
Step 16 :6b. Q_{total} = -W_{total} = -(-9.3114 \mathrm{L~atm}) = 9.3114 \mathrm{L~atm}
Step 17 :7. \Delta E_{int} = 0
Step 18 :8. efficiency = \frac{W_{total}}{Q_{total}} = \frac{-9.3114 \mathrm{L~atm}}{9.3114 \mathrm{L~atm}} = -1.0000