Step 1 :Set \( f(x) = g(x) \) to find the points of intersection: \( x^2 - c^2 = c^2 - x^2 \)
Step 2 :Simplify to get \( 2x^2 = 2c^2 \)
Step 3 :Solve for x to get \( x = \pm c \)
Step 4 :Calculate the area between the parabolas from \( x = -c \) to \( x = c \) using the integral of the upper function minus the lower function: \( A = \int_{-c}^{c} (g(x) - f(x)) dx \)
Step 5 :Substitute \( g(x) \) and \( f(x) \) into the integral: \( A = \int_{-c}^{c} ((c^2 - x^2) - (x^2 - c^2)) dx \)
Step 6 :Simplify the integral: \( A = \int_{-c}^{c} (2c^2 - 2x^2) dx \)
Step 7 :Separate the integral into two parts: \( A = 2c^2 \int_{-c}^{c} dx - 2 \int_{-c}^{c} x^2 dx \)
Step 8 :Evaluate the integrals: \( A = 2c^2 [x]_{-c}^{c} - 2 [\frac{x^3}{3}]_{-c}^{c} \)
Step 9 :Simplify the expression: \( A = 4c^3 - 2 (\frac{c^3}{3} - \frac{(-c)^3}{3}) \)
Step 10 :Further simplify to get \( A = 4c^3 - \frac{4c^3}{3} \)
Step 11 :Combine like terms: \( A = \frac{12c^3}{3} - \frac{4c^3}{3} \)
Step 12 :Final simplification: \( A = \frac{8c^3}{3} \)
Step 13 :Set the area equal to 9: \( \frac{8c^3}{3} = 9 \)
Step 14 :Solve for \( c^3 \) to get \( c^3 = \frac{27}{8} \)
Step 15 :Take the cube root of both sides: \( c = \sqrt[3]{\frac{27}{8}} \)
Step 16 :Simplify the cube root: \( c = \sqrt[3]{\frac{3^3}{2^3}} \)
Step 17 :Final answer: \( c = \frac{3}{2} \)
Step 18 :\(\boxed{c = \frac{3}{2}}\)