Step 1 :Find the derivative of \( y \) with respect to \( x \) if \( y = \ln \left( x^{2} \cos x \right) \)
Step 2 :Use the chain rule and the product rule for differentiation
Step 3 :The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function, multiplied by the derivative of the inner function
Step 4 :The product rule states that the derivative of a product of two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function
Step 5 :Apply the chain rule and product rule to find \( y' \)
Step 6 :\( y' = \frac{d}{dx} \ln \left( x^{2} \cos x \right) \)
Step 7 :\( y' = \frac{1}{x^{2} \cos x} \cdot \frac{d}{dx} \left( x^{2} \cos x \right) \)
Step 8 :\( y' = \frac{1}{x^{2} \cos x} \cdot \left( x^{2} \cdot \frac{d}{dx} \cos x + \cos x \cdot \frac{d}{dx} x^{2} \right) \)
Step 9 :\( y' = \frac{1}{x^{2} \cos x} \cdot \left( x^{2} \cdot (-\sin x) + \cos x \cdot 2x \right) \)
Step 10 :\( y' = \frac{-x^{2} \sin x + 2x \cos x}{x^{2} \cos x} \)
Step 11 :Simplify the final answer
Step 12 :\( \boxed{\frac{-x^{2} \sin x + 2x \cos x}{x^{2} \cos x}} \)