Step 1 :\(f(x) = 3x^2 - 2x + m\)
Step 2 :To find the minimum value of \(f(x)\), we can find the vertex of the parabola. The x-coordinate of the vertex is given by \(x_v = \frac{-b}{2a}\), where \(a = 3\) and \(b = -2\).
Step 3 :\(x_v = \frac{-(-2)}{2(3)} = \frac{2}{6} = \frac{1}{3}\)
Step 4 :Now, we can find the y-coordinate of the vertex by plugging \(x_v\) into the function \(f(x)\):
Step 5 :\(y_v = f\left(\frac{1}{3}\right) = 3\left(\frac{1}{3}\right)^2 - 2\left(\frac{1}{3}\right) + m\)
Step 6 :\(y_v = 3\left(\frac{1}{9}\right) - \frac{2}{3} + m = \frac{1}{3} - \frac{2}{3} + m = \frac{4}{3}\)
Step 7 :Now, we can solve for \(m\):
Step 8 :\(\frac{4}{3} = \frac{1}{3} - \frac{2}{3} + m\)
Step 9 :\(\frac{4}{3} = -\frac{1}{3} + m\)
Step 10 :\(m = \frac{4}{3} + \frac{1}{3} = \boxed{\frac{5}{3}}\)
Step 11 :Now, we can find the value of \(x\) when \(f(x) = \frac{4}{3}\) using the value of \(m\) we found:
Step 12 :\(\frac{4}{3} = 3x^2 - 2x + \frac{5}{3}\)
Step 13 :\(0 = 3x^2 - 2x + \frac{5}{3} - \frac{4}{3}\)
Step 14 :\(0 = 3x^2 - 2x + \frac{1}{3}\)
Step 15 :To solve for \(x\), we can use the quadratic formula:
Step 16 :\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
Step 17 :In this case, \(a = 3\), \(b = -2\), and \(c = \frac{1}{3}\):
Step 18 :\(x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(3)\left(\frac{1}{3}\right)}}{2(3)}\)
Step 19 :\(x = \frac{2 \pm \sqrt{4 - 4}}{6}\)
Step 20 :\(x = \frac{2 \pm \sqrt{0}}{6}\)
Step 21 :Since the square root of 0 is 0, we have:
Step 22 :\(x = \frac{2}{6} = \boxed{\frac{1}{3}}\)