Step 1 :Consider the vector field \(\mathbf{F}(x, y, z)=\left(\frac{x^{3}}{3}+x y^{2}\right) \mathbf{i}+\left(\frac{y^{3}}{3}+y x^{2}\right) \mathbf{j}+z\left(x^{2}+y^{2}\right) \mathbf{k}\) and the surface S, which is the portion of the paraboloid \(z=x^{2}+y^{2}\) in the half-space \(y \geq 0\) and below the plane \(z=1\) with normal \(\mathbf{n}\) such that \(\mathbf{n} \cdot \mathbf{k}>0\).
Step 2 :Calculate the divergence of F: \(\operatorname{div} \mathbf{F} = 3x^2 + 3y^2\).
Step 3 :Convert the divergence to cylindrical coordinates: \(\operatorname{div} \mathbf{F}_{cylindrical} = r(3r^2\sin^2(\theta) + 3r^2\cos^2(\theta))\).
Step 4 :Set up the triple integral using cylindrical coordinates with the limits of integration for the volume enclosed by S: \(r: 0 \to 1\), \(\theta: 0 \to \pi\), and \(z: r^2 \to 1\).
Step 5 :Calculate the triple integral: \(\iiint \operatorname{div} \mathbf{F}_{cylindrical} \, dV = \frac{\pi}{4}\).
Step 6 :\(\boxed{\frac{\pi}{4}}\) is the surface integral of the given vector field F over the surface S.