Step 1 :First, we need to compute the binomial probability $P(X)$ using the formula $P(X) = \binom{n}{X}p^X(1-p)^{n-X}$, where $n=50$, $p=0.7$, and $X=39$.
Step 2 :Substitute the given values into the formula, we get $P(X) = \binom{50}{39}(0.7)^{39}(1-0.7)^{50-39}$.
Step 3 :Calculate $\binom{50}{39}$ using the formula $\binom{n}{X} = \frac{n!}{X!(n-X)!}$, we get $\binom{50}{39} = \frac{50!}{39!(50-39)!} = \frac{50!}{39!11!}$.
Step 4 :Calculate $50!$, $39!$, and $11!$ respectively, we get $50! = 30414093201713378043612608166064768844377641568960512000000000000$, $39! = 20397882081197443358640281739902897356800000000$, and $11! = 39916800$.
Step 5 :Substitute these values into the formula, we get $\binom{50}{39} = \frac{30414093201713378043612608166064768844377641568960512000000000000}{20397882081197443358640281739902897356800000000 \times 39916800} = 122977956517698282$.
Step 6 :Substitute $\binom{50}{39}$, $p$, and $n-X$ into the formula, we get $P(X) = 122977956517698282 \times (0.7)^{39} \times (1-0.7)^{11}$.
Step 7 :Calculate $(0.7)^{39}$ and $(1-0.7)^{11}$ respectively, we get $(0.7)^{39} = 1.6069380442589902755419620923412e-10$ and $(1-0.7)^{11} = 5.904899999999999e-6$.
Step 8 :Substitute these values into the formula, we get $P(X) = 122977956517698282 \times 1.6069380442589902755419620923412e-10 \times 5.904899999999999e-6 = 0.0117$.
Step 9 :Round to four decimal places as needed, we get $P(X) = \boxed{0.0117}$.
Step 10 :Next, we need to determine whether the normal distribution can be used to estimate this probability. The rule of thumb is that the normal distribution can be used if both $np$ and $n(1-p)$ are greater than 5.
Step 11 :Calculate $np$ and $n(1-p)$ respectively, we get $np = 50 \times 0.7 = 35$ and $n(1-p) = 50 \times (1-0.7) = 15$.
Step 12 :Since both $np$ and $n(1-p)$ are greater than 5, the normal distribution can be used to estimate this probability.
Step 13 :Finally, we need to approximate $P(X)$ using the normal distribution and compare the result with the exact probability. The formula for the normal distribution is $P(X) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(X-\mu)^2}{2\sigma^2}}$, where $\mu = np$ and $\sigma = \sqrt{np(1-p)}$.
Step 14 :Calculate $\mu$ and $\sigma$ respectively, we get $\mu = np = 35$ and $\sigma = \sqrt{np(1-p)} = \sqrt{35 \times (1-0.7)} = 3.24037034920393$.
Step 15 :Substitute $\mu$, $\sigma$, and $X$ into the formula, we get $P(X) = \frac{1}{\sqrt{2\pi \times 3.24037034920393^2}}e^{-\frac{(39-35)^2}{2 \times 3.24037034920393^2}} = 0.1137$.
Step 16 :Round to four decimal places as needed, we get $P(X) = \boxed{0.1137}$.
Step 17 :Compare the result with the exact probability, we find that the normal distribution overestimates the exact probability.