Step 1 :Calculate means: \( \bar{x} = 78 \), \( \bar{y} = 77.8 \)
Step 2 :Calculate sums: \( \sum_{i=1}^{10} x_i = 780 \), \( \sum_{i=1}^{10} y_i = 778 \), \( \sum_{i=1}^{10} x_i y_i = 61010 \), \( \sum_{i=1}^{10} x_i^2 = 59784 \)
Step 3 :Calculate slope: \( b = \frac{10(61010)-780(778)}{10(59784)-780^2} = 1.3039 \)
Step 4 :Calculate y-intercept: \( a = \bar{y} - b\bar{x} = 77.8 - 1.3039(78) = 15.7884 \)
Step 5 :Least squares regression line: y = 1.3039x + 15.7884
Step 6 :Slope interpretation: For every 1 point increase in Test \( x \), Test \( y \) is expected to increase by 1.3039 points
Step 7 :y-intercept interpretation: If a student scored 0 on Test \( x \), their predicted score on Test \( y \) would be 15.7884
Step 8 :Predicted \( y \) value for student with 92 on Test \( x \): \( y = 1.3039(92) + 15.7884 = 135.2453 \)
Step 9 :Residual: Observed \( y \) - Predicted \( y \) = 88 - 135.2453 = -3.0789