Step 1 :Define the function \(f(x, y) = 4x \sin(xy)\)
Step 2 :Compute the partial derivative of \(f(x, y)\) with respect to x, \(f_x(x, y) = 4x \sin(xy) + 4y \cos(xy)\)
Step 3 :Compute the partial derivative of \(f(x, y)\) with respect to y, \(f_y(x, y) = 4x^2 \cos(xy)\)
Step 4 :Evaluate the partial derivatives at the point (4,5) to get the gradient vector at that point, \(\nabla f(4,5) = (f_x(4,5), f_y(4,5)) = (4 \sin(20) + 80 \cos(20), 64 \cos(20))\)
Step 5 :Compute the magnitude of the gradient vector, \(|\nabla f(4,5)| = \sqrt{(4 \sin(20) + 80 \cos(20))^2 + (64 \cos(20))^2}\)
Step 6 :Normalize the gradient vector to get the unit vector in the direction of maximum rate of change, \(\hat{\nabla} f(4,5) = \frac{\nabla f(4,5)}{|\nabla f(4,5)|} = \left(\frac{4 \sin(20) + 80 \cos(20)}{\sqrt{(4 \sin(20) + 80 \cos(20))^2 + (64 \cos(20))^2}}, \frac{64 \cos(20)}{\sqrt{(4 \sin(20) + 80 \cos(20))^2 + (64 \cos(20))^2}}\right)\)
Step 7 :\(\boxed{\hat{\nabla} f(4,5) = \left(\frac{4 \sin(20) + 80 \cos(20)}{\sqrt{(4 \sin(20) + 80 \cos(20))^2 + (64 \cos(20))^2}}, \frac{64 \cos(20)}{\sqrt{(4 \sin(20) + 80 \cos(20))^2 + (64 \cos(20))^2}}\right)}\)