Step 1 :Given \(\sin \theta = 0.31\), we can use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\) to find \(\cos \theta\):
Step 2 :\(\cos^2 \theta = 1 - \sin^2 \theta = 1 - (0.31)^2\)
Step 3 :\(\cos \theta \approx 0.9507\)
Step 4 :Next, we can find \(\tan \theta\) using the formula \(\tan \theta = \frac{\sin \theta}{\cos \theta}\):
Step 5 :\(\tan \theta \approx \frac{0.31}{0.9507} \approx 0.3261\)
Step 6 :\(\boxed{\cos \theta \approx 0.9507, \tan \theta \approx 0.3261}\)
Step 7 :Given \(\cos \theta = -0.31\), we can use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\) to find \(\sin \theta\):
Step 8 :\(\sin^2 \theta = 1 - \cos^2 \theta = 1 - (-0.31)^2\)
Step 9 :\(\sin \theta \approx 0.9507\)
Step 10 :Next, we can find \(\tan \theta\) using the formula \(\tan \theta = \frac{\sin \theta}{\cos \theta}\):
Step 11 :\(\tan \theta \approx \frac{0.9507}{-0.31} \approx -3.0669\)
Step 12 :\(\boxed{\sin \theta \approx 0.9507, \tan \theta \approx -3.0669}\)
Step 13 :Given the triangle conditions, we know that \(\angle A = \angle B = 45^\circ\) and \(AB = CD = 5\). We can use the Law of Sines to find \(\theta\):
Step 14 :\(\sin \angle C = \frac{AB}{CD} \sin \angle E\)
Step 15 :\(\sin \angle C \approx \frac{5}{5} \sin 35^\circ \approx 0.9848\)
Step 16 :\(\angle C \approx 100^\circ\)
Step 17 :Since \(\angle A = \angle B = 45^\circ\), we can find \(\theta\) by subtracting the sum of \(\angle A\) and \(\angle B\) from \(\angle C\):
Step 18 :\(\theta \approx 100^\circ - (45^\circ + 45^\circ) \approx 80^\circ\)
Step 19 :\(\boxed{\theta \approx 80^\circ}\)