Step 1 :\(x_P = e^t\) and \(x_Q = 1 + 6e^{-t}\)
Step 2 :(a) \(\lim_{t \to \infty} x_Q = \lim_{t \to \infty} (1 + 6e^{-t}) = 1\)
Step 3 :(b) Sketch the path of particle Q on a cartesian plane.
Step 4 :(c) \(e^t = 1 + 6e^{-t}\)
Step 5 :\(e^{2t} = 6\)
Step 6 :\(2t = \ln 6\)
Step 7 :\(t = \frac{1}{2} \ln 6\)
Step 8 :\(x = e^{\frac{1}{2} \ln 6} = \sqrt{6}\)
Step 9 :\(\boxed{(t, x) = (\frac{1}{2} \ln 6, \sqrt{6})}\)
Step 10 :(d) \(v_P = \frac{dx_P}{dt} = e^t\) and \(v_Q = \frac{dx_Q}{dt} = -6e^{-t}\)
Step 11 :Since \(e^t > 0\) and \(-6e^{-t} < 0\), \(v_P\) and \(v_Q\) will never be equal.