Step 1 :Since $2+i$ is a root of the cubic polynomial, its complex conjugate $2-i$ is also a root. Thus, we have two roots: $2+i$ and $2-i$.
Step 2 :Let the third root be $a$. Then, by Vieta's formulas, we have $a+(2+i)+(2-i)=0$, which implies $a=-4$.
Step 3 :Thus, the cubic polynomial can be factored as $(x-(2+i))(x-(2-i))(x+4) = (x^2-4x+5)(x+4)$.
Step 4 :Using partial fractions, we can write \(\frac{37}{x^3-11x+20}\) as \(\frac{A}{x+4} + \frac{Bx+C}{x^2-4x+5}\).
Step 5 :Multiplying both sides by $x^3-11x+20$, we get $37 = A(x^2-4x+5) + (Bx+C)(x+4)$.
Step 6 :Setting $x=-4$, we get $37 = 21A$, so $A=\frac{37}{21}$.
Step 7 :Comparing coefficients, we have $B=-\frac{37}{21}$ and $C=\frac{185}{21}$.
Step 8 :Thus, \(\int \frac{37}{x^3-11x+20} dx = \int \frac{\frac{37}{21}}{x+4} + \frac{-\frac{37}{21}x+\frac{185}{21}}{x^2-4x+5} dx\).
Step 9 :Integrating, we get \(\frac{37}{21} \ln|x+4| - \frac{37}{21} \int \frac{x}{x^2-4x+5} dx + \frac{185}{21} \int \frac{1}{x^2-4x+5} dx\).
Step 10 :Completing the square for the denominator of the second integral, we get \(\int \frac{x}{x^2-4x+5} dx = \int \frac{x}{(x-2)^2+1} dx\).
Step 11 :Using substitution, let $u=x-2$, then $du=dx$. The integral becomes \(\int \frac{u+2}{u^2+1} du\).
Step 12 :Splitting the fraction, we get \(\int \frac{u}{u^2+1} du + \int \frac{2}{u^2+1} du\).
Step 13 :Integrating, we get \(\frac{1}{2} \ln(u^2+1) + 2 \arctan(u) + C_1 = \frac{1}{2} \ln((x-2)^2+1) + 2 \arctan(x-2) + C_1\).
Step 14 :Completing the square for the denominator of the third integral, we get \(\int \frac{1}{x^2-4x+5} dx = \int \frac{1}{(x-2)^2+1} dx\).
Step 15 :Integrating, we get \(\arctan(x-2) + C_2\).
Step 16 :Combining all the integrals, we get \(\frac{37}{21} \ln|x+4| - \frac{37}{21} \left(\frac{1}{2} \ln((x-2)^2+1) + 2 \arctan(x-2)\right) + \frac{185}{21} \arctan(x-2) + C\).
Step 17 :Thus, the final answer is \(\boxed{\frac{37}{21} \ln|x+4| - \frac{37}{42} \ln((x-2)^2+1) + \frac{111}{21} \arctan(x-2) + C}\).