Step 1 :First, we need to find the value of $m$ such that $12^\frac{m+2}{3} \times 3^\frac{3m-1}{2}$ is a natural number.
Step 2 :We can rewrite the expression as $\left(2^2 \times 3\right)^\frac{m+2}{3} \times 3^\frac{3m-1}{2}$
Step 3 :Now, we can distribute the exponent to get $2^\frac{2(m+2)}{3} \times 3^\frac{m+2}{3} \times 3^\frac{3m-1}{2}$
Step 4 :Combining the terms with the same base, we get $2^\frac{2(m+2)}{3} \times 3^{\frac{m+2}{3} + \frac{3m-1}{2}}$
Step 5 :For the expression to be a natural number, both exponents must be integers.
Step 6 :Let's first focus on the exponent of 2: $\frac{2(m+2)}{3}$. For this to be an integer, $m+2$ must be a multiple of 3.
Step 7 :Now, let's focus on the exponent of 3: $\frac{m+2}{3} + \frac{3m-1}{2}$. For this to be an integer, the numerator must be a multiple of 6.
Step 8 :We can rewrite the exponent of 3 as $\frac{2(m+2) + 3(3m-1)}{6}$
Step 9 :Simplifying the numerator, we get $\frac{11m+1}{6}$
Step 10 :For this to be an integer, $11m+1$ must be a multiple of 6.
Step 11 :Now, we need to find the largest value of $m$ that satisfies both conditions and is less than or equal to 100.
Step 12 :By testing values of $m$, we find that the largest value that satisfies both conditions is $m=\boxed{91}$ (1)