Step 1 :\(\forall t \in\left[0, +\infty\right[\), \text{we have to show that} \frac{1}{(2+t)^{2}} \leq \frac{1}{1+t} \leq \frac{1}{2}\left(1+\overline{(1+t)^{2}}\right)\)
Step 2 :\(\text{Since} \frac{1}{(2+t)^{2}} \leq \frac{1}{1+t} \iff (1+t)(2+t)^2 \geq 1\)
Step 3 :\(\text{Expanding the inequality, we get} \ t^3 + 4t^2 + 4t \geq 0\)
Step 4 :\(\text{Since} \ t \geq 0, \text{the inequality holds true}\)
Step 5 :\(\text{Now, we have to show that} \frac{1}{1+t} \leq \frac{1}{2}\left(1+\overline{(1+t)^{2}}\right) \iff 2(1+t) \leq 1 + (1+t)^2\)
Step 6 :\(\text{Expanding the inequality, we get} \ t^2 - t \geq 0\)
Step 7 :\(\text{Since} \ t(t-1) \geq 0, \text{the inequality holds true}\)
Step 8 :\(\text{Now, we have to show that} \frac{2 x}{2+x} \leq \ln (1+x) \leq \frac{1}{2}\left(\frac{x^{2}+2 x}{1+x}\right)\)
Step 9 :\(\text{Using the inequalities we proved above, we get} \int_{0}^{x} \frac{2}{2+t} dt \leq \int_{0}^{x} \frac{1}{1+t} dt \leq \int_{0}^{x} \frac{1}{2}(1+\overline{(1+t)^{2}}) dt\)
Step 10 :\(\text{Integrating, we get} \frac{2 x}{2+x} \leq \ln (1+x) \leq \frac{1}{2}\left(\frac{x^{2}+2 x}{1+x}\right)\)
Step 11 :\(\text{Now, let's find the limit} \lim _{x \rightarrow 0} \frac{g(x)-1}{x} = \lim _{x \rightarrow 0} \frac{\frac{\ln (1+x)}{x} - 1}{x}\)
Step 12 :\(\text{Using L'Hopital's rule, we get} \lim _{x \rightarrow 0} \frac{\frac{1}{1+x} - \frac{\ln (1+x)}{x^2}}{1}\)
Step 13 :\(\text{Taking the limit as} \ x \rightarrow 0, \text{we get} \frac{-1}{2}\)
Step 14 :\(\boxed{\lim _{x \rightarrow 0} \frac{g(x)-1}{x} = \frac{-1}{2}}\)