Step 1 :1. Stationary: Check if \( |0.5| < 1 \), as the condition for \( Y_{t} = 0.5 Y_{t-1} + \varepsilon_{t} + 0.4\varepsilon_{t-1} \) to be stationary.
Step 2 :2. Invertible: Check if \( |0.4| < 1 \), as the condition for \( Y_{t} = 0.5 Y_{t-1} + \varepsilon_{t} + 0.4\varepsilon_{t-1} \) to be invertible.
Step 3 :3. Calculate \( \gamma_{k} \) for \( k=0 \) to \( k=5 \) using the formula \( \gamma_{k} = \sigma^2 \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k} \), where \( \sigma^2 = 3 \) and \( \psi_{j} \) are the coefficients from the corresponding \( MA(\infty) \) model.
Step 4 :4. Calculate \( R_{k} \) for \( k=1 \) to \( k=5 \) using the formula \( R_{k} = \frac{\gamma_{k}}{\gamma_{0}} \).
Step 5 :5. Calculate \( \psi_{j} \) for \( j=1 \) to \( j=5 \) using the formula \( \psi_{j} = \frac{\pi_{j-1} + 0.5\pi_{j-2}}{1 - 0.5^2} \), where \( \pi_{j} \) are the coefficients from the corresponding \( AR(\infty) \) model.
Step 6 :6. Calculate \( \pi_{j} \) for \( j=1 \) to \( j=5 \) using the formula \( \pi_{j} = \frac{\psi_{j-1} + 0.4\psi_{j-2}}{1 - 0.4^2} \), where \( \psi_{j} \) are the coefficients from the corresponding \( MA(\infty) \) model.