Step 1 :1. Calculate \(\hat{p_c}\) and \(\hat{p_1}\) and \(\hat{p_2}\): \[\hat{p_c} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{208}{291 + 263}\, \hat{p_1} = \frac{208}{291}\, \hat{p_2} = \frac{208 - 208}{263} \]
Step 2 :2. Calculate the standard error: \[SE = \sqrt{\frac{\hat{p_c} (1 - \hat{p_c})}{n_1} + \frac{\hat{p_c} (1 - \hat{p_c})}{n_2}} \]
Step 3 :3. Calculate the test statistic: \[Z = \frac{(\hat{p_1} - \hat{p_2}) - 0}{SE} \]
Step 4 :4. Find the \(p\)-value by using the standard normal table with Z
Step 5 :5. Compare the \(p\)-value with the significance level \(\alpha = 0.02\)